

is now

indie Semiconductor FFO GmbH

To learn more about indie Semiconductor, please visit our website at <u>www.indiesemi.com</u>

For customer support, please contact us at: <u>dfo.support@indiesemi.com</u>

indie and the indie logo are trademarks of Ay Dee Kay LLC dba indie Semiconductor in the United States and in other countries. Silicon Radar GmbH was acquired by indie Semiconductor and is now indie Semiconductor FFO GmbH. Purchase of products is governed by indie Semiconductor FFO GmbH's Terms and Conditions.

Support / Wiki:

Silicon Radar GmbH Im Technologiepark 1 15236 Frankfurt (Oder) Germany

fon +49 (0) 335 228 80 30 fax +49 (0) 335 557 10 50 https://www.siliconradar.com https://wiki.siliconradar.com

SiRad Easy[®] r4

(Firmware 1.5 or higher)

System & Protocol Description

Status:	Date:	Author:	Filename:	
Release	16-Nov-2022	Silicon Radar GmbH	Protocol_Description_SiRad_Easy_r4	
Version:	Product number:	Hardware:	Marking:	Page:
1.1	SiRad Easy® r4	SiRad Easy® r4 BB v1.0 – v1.3		1 of 36
Document:	Annex to VA_U03_01	Anlage 8_Template_Datenblatt_RevE	Date: 19-May-2020	Rev D

Version Control

Version	Changed section	Description of change	Reason for change
0.9	all		Initial document
1.0	all	Minor corrections	Protocol adjustments Firmware 1.2
1.1	7, all	Update in 7, other minor corrections	Binary protocol change

Table of Contents

1	Measurement Flow	6
1.1	Auto Gain Control (AGC) Mode	7
1.2	Trigger Options	8
1.3	Ramp Modes	9
1.4	CFAR Operator	9
1.5	Tuning Options	.10
2	Supported Protocols	11
2.1	UART Settings	.11
2.2	Software Compatibility	.11
2.3	Supported Data Frames per Output Mode	.11
2.4	Terminal Program (Send / Receive)	.12
2.5	Output Mode Configuration (Examples)	.13
2.5.1	Change Output Mode and Data from the WebGUI (WebGUI or TSV)	.13
2.5.2	Change to TSV Output Mode from a Terminal Program	.13
2.5.3	Change to Binary Output Mode from a Terminal Program	.13
2.5.4	Activate ADC Raw Data (I/Q) Output from a Terminal Program	.13
2.5.5	Activate Complex FFT Data Output from a Terminal Program	.13
3	Commands (Input) – WebGUI & TSV Mode	14
3.1	Command Frames	.14
3.2	Hardware and Software Compatibility	.14
3.3	Configuration (Long) Commands	.15
3.3.1	System Configuration	.15
3.3.2	Radar Front End Configuration	.16
3.3.3	PLL Configuration	.17
3.3.4	Baseband Configuration	.18
3.4	Special Function (Short) Commands	.19
3.5	Timing and UART Receive Buffer	.19
4	Commands (Input) – Binary Mode	20
4.1	Commands	.20
4.2	Requests	.21
5	WebGUI Output Mode (Default)	22
5.1	Magnitude/Range, Phase and CFAR Output	.23
5.2	Target Information	.24
5.3	Status Update	.24
5.4	Error Information	.25
5.5	!E Command – Answer: Detailed Error Report	.25
5.6	!I Command – Answer: System Information	.26
5.7	!V Command – Answer: Version Information	.26

6	TSV Output Mode	
6.1	ADC, Magnitude/Range, Phase and CFAR Output	
6.2	Target Information	
6.3	Status Update	
7	Binary Output Mode	
7.1	Data Frame; ADC Raw Data (I/Q), Magnitude, Phase and CFAR Output	
7.2	Data Frame; Target Information	
7.3	Parameters Frame	
7.4	Info Frame	
7.5	Error Frame	
Disclain	ner	36

List of Figures

Figure 1	Flow of Radar Measurement	6
Figure 2	Processing and Data Extraction Steps on SiRad Evaluation Kits	7
Figure 3	Single Ramp vs. Ramp Group (Set of Ramps)	9
Figure 4	Ramps Group Details	9
Figure 5	Schematic description of the CACFAR operator	10
Figure 6	Send and Receive Using a Terminal Program	12
Figure 7	Example: System Configuration Bits Settings	12
Figure 8	Example: System Configuration in HEX String Format	12
Figure 9	Command Frames	14
Figure 10	System Configuration Frame Format	15
Figure 11	System Configuration Default Bit Settings	15
Figure 12	Radar Front End Configuration Frame Format	16
Figure 13	Radar Front End Configuration Default Bit Settings	16
Figure 14	PLL Configuration Frame Format	17
Figure 15	PLL Configuration Default Bit Settings	17
Figure 16	Baseband Setup Frame Format	18
Figure 17	Baseband Setup Default Bit Settings	18
Figure 18	WebGUI Data (Default Communication) in a Terminal Window	22
Figure 19	WebGUI Data Frame Formats (Default Communication)	23
Figure 20	WebGUI Range, Phase and CFAR Data Frame Format	23
Figure 21	WebGUI Target List Data Frame Format	24
Figure 22	WebGUI Status Update Data Frame Format	24
Figure 23	WebGUI Error Information Data Frame Format	25
Figure 24	WebGUI Error Information Data Bits	25
Figure 25	WebGUI Detailed Error Report Frame Format	26
Figure 26	WebGUI Detailed Error Report Bits	26
Figure 27	WebGUI System Information Data Frame Format	26
Figure 28	WebGUI Version Information Data Frame Format (WebGUI Output Format Only)	27
Figure 29	TSV Data Frame (II and IQ Frame) in a Terminal Window	28
Figure 30	TSV Data Frame Formats	29
Figure 31	TSV ADC, Magnitude, Phase and CFAR Data Frame Format	29
Figure 32	TSV Target List Data Frame Format	29
Figure 33	TSV Status Update Data Frame Format	30
Figure 34	Binary Data in a Terminal Window	31
Figure 35	Data Frame	31
Figure 36	Target information – payload in Data Frame	32
Figure 37	Parameter Frame	33
Figure 38	Info Frame	33
Figure 39	Error Frame	34

List of Tables

Table 1	Manual Gain Modes	7
Table 1	Trigger Input Modes	،
Table 3	Trigger Input Modes Information Trigger and Pre-Trigger	
Table 3	Trigger Output Modes	8
Table 5	Trigger Outputs	8
Table 6	Compatibility of WebGUI and Third-Party Software	
Table 7	Supported Data Frames per Output Mode (WebGUI vs. TSV vs. Binary)	
Table 8	Command Frames Compatibility with SiRad Fasy® r4 and WebGUI	
Table 9	Configuration Commands	
Table 10	System Configuration Default Commands	
Table 11	System Configuration Bits	
Table 12	Radar Front End Configuration Default Commands	
Table 13	Radar Front End Configuration Bits	
Table 14	PLL Configuration Default Commands	
Table 15	PLL Configuration Bits	
Table 16	Minimum Full Bandwidth per Radar Front End (Examples)	
Table 17	Baseband Setup Default Commands	
Table 18	Baseband Setup Bits	
Table 19	Sampling time and sample frequency	
Table 20	Special Function Commands	19
Table 21	Parameter keywords and values	20
Table 22	WebGUI Range, Phase and CFAR Data Bits	23
Table 23	WebGUI Target List Data Bits	24
Table 24	WebGUI Target List Data - Format Field	24
Table 25	WebGUI Status Update Data Bits	25
Table 26	WebGUI System Information Bits	26
Table 27	WebGUI Version Information Bits	27
Table 28	RFE Types	27
Table 29	TSV ADC, Magnitude, Phase and CFAR Data Values	29
Table 30	TSV Target List Data Values	
Table 31	TSV Target List Data and Status Update Data - Format Field	
Table 32	TSV Status Update Data Values	
Table 33	Binary Frame Data Values	32
Table 34	Data Source	32
Table 35	Binary Frame Identifier Overview	32
Table 36	Binary ADC, FFT, Magnitude, Phase and CFAR Data Values	32
Table 37	Binary Target List Data Values	
Table 38	Binary Parameters Data Values	
Table 39	Binary System Data Values	33
Table 40	Info Tags	34
Table 41	Binary Error Data Values	34
Table 42	Error Tags	35

List of Equations

Equation 1	Ramp Time	18
Equation 2	Accuracy	19

1 Measurement Flow

This section describes the measurement flow of the evaluation kit with its most important parameters. The settings as well as the kind and amount of transmitted data can be modified by the communication protocol described in the following sections.

After start up, the evaluation kit scans for the minimum and maximum frequencies that the mounted radar front end can use and the start- or base-frequency f_{Base} is set to minimum frequency as a result of the frequency scan. The evaluation kit also determines the maximum usable bandwidth f_{BW} from the result of the frequency scan and sets this bandwidth after the frequency scan was performed. The frequency scan (fscan) and set to maximum bandwidth (max BW) functions are repeatable using protocol commands, please also see Section 3.4. Individual base-frequencies and bandwidths can be set after startup, please also see Section 3.3.2 and Section 3.3.3.

The workflow of the radar measurement is shown in Figure 1. Each measurement cycle is initiated by either an internal self-trigger (int) or an external / manual trigger (ext). Continuous measurements can be triggered with a certain trigger frequency, also see Section 1.2 for the trigger options.

Once a trigger is received, the PLL is started and drives a frequency ramp from the base-frequency f_{Base} to $f_{Base} + f_{BW}$ for each ramp in the number of ramps N_{Ramps} with the ramp time t_{Ramp} . The radar front end starts its detection in this frequency range during each ramp. The ideal ramp time t_{Ramp} is around 1 ms for achieving good initial SNR with the baseband of the evaluation kit, unless it is modified.

Figure 1 Flow of Radar Measurement

The AD converter (ADC) begins sampling the number of samples n_{Smp} with a certain sample frequency f_{Smp} . The current measurement is repeated for the number of ramps N_{Ramps} , further called ramp group. Depending on the processing settings, there can be a smaller or larger delay between each ramp in the ramp group due to the processing of previous ramp data while the next ramp is driving.

The baseband amplification factor is adjusted by a manually chosen gain value or by a continuously recalculated automatically acquired gain value, further named Auto Gain Control (AGC) Mode, also see Section 1.1. If Auto Gain Control (AGC) Mode is switched on, the kit drives two additional ramps in the beginning of the ramp group to determine optimum gain settings for the environment. Otherwise, the gain factor is set according to the manual gain setting.

The DC cancelation is a standard mean subtraction and is performed on each ramp separately, if switched on. The IQ data acquired during each ramp of the ramp group is summed up and scaled to increase the SNR. Depending on the processing settings, FIR filtering, down sampling, and windowing are performed on the measured data and then transformed by an FFT with n_{FFT} points. Figure 2 shows the order of processing and data extraction steps.

Magnitude, phase and other information is extracted from the FFT. The output data of a number M_{FFT} of FFTs can be averaged. The targets in the FFT output data are detected by the CFAR operator (with its parameters CFsize, CFguard and CFthres). There are 3 different available CFAR operators - CA-CFAR, GO-CFAR and SO-CFAR. The Target List is then created from the CFAR output and the data extracted from the FFT. The kind and amount of output data is selectable and can have different data formats: WebGUI output (standard), Tab Separated Values (TSV) and Binary output. The resulting data is always transferred immediately after a measurement (full ramp group) took place.

1.1 Auto Gain Control (AGC) Mode

A measurement is divided into two parts: pre-measurement and measurement. The pre-phase is used to detect the maximum gain setting of the device so that no saturation occurs. It uses two frequency ramps to do that (if the Auto Gain Control Mode is switched on). The actual measurement is started after the pre-measurement phase and consists of a chosen number of frequency ramps.

The device uses the manual gain setting when the AGC Mode is disabled. When AGC Mode is switched on, the device may switch between two gain modes during measurements, depending on the environment conditions. In this case, it is recommended to switch AGC Mode off and set the gain manually, so that no gain switching occurs between measurements.

RFE Board TRX_120_001						
Gain	0	1	2	3	4	5
SPI Control Value	0	1	2	4	6	7
1st Stage Gain 20 dB						
2nd Stage Gain	1 dB	2 dB	4 dB	8 dB	16 dB	32 dB
Combined Gain	21 dB	22 dB	24 dB	28 dB	36 dB	52 dB
Allowed Values in WebGUI Output Mode	195	196	198	202	210	226
Allowed Values in TSV and Binary Output Mode	21	22	24	28	36	52

Table 1 Manual Gain Modes

<continued on next page>

RFE Board TRA_120_002 / TRX_024_046						
Gain	0	1	2	3	4	5
SPI Control Value	0	1	2	4	6	7
1st Stage Gain	12 dB					
2nd Stage Gain	1 dB	2 dB	4 dB	8 dB	16 dB	32 dB
Combined Gain	13 dB	14 dB	16 dB	20 dB	28 dB	44 dB
Allowed Values in WebGUI Output Mode	187	188	190	197	202	218
Allowed Values in TSV and Binary Output Mode	13	14	16	20	28	44

RFE Board TRA_120_045						
Gain	0	1	2	3	4	5
SPI Control Value	0	1	2	3	4	5
IC Gain	1 dB	10 dB	20 dB	30 dB	40 dB	60 dB
Combined Gain	6 dB	19 dB	29 dB	39 dB	49 dB	69 dB
Allowed Values in WebGUI Output Mode	180	193	203	213	223	243
Allowed Values in TSV and Binary Output Mode	6	19	29	39	49	69

1.2 Trigger Options

After the pre-measurement phase (please see Section 1.1) the actual measurement is started and consists of a chosen number of frequency ramps (ramp group). A measurement can be triggered either manually (externally) or internally via a timer (self-trigger).

When the Self-Trigger Mode is enabled, the device triggers each measurement after an internal timer expired (and resets the timer). The External Trigger Mode is overridden by the Self-Trigger Mode. When the Self-Trigger Mode is disabled, the device enters External Trigger Mode and goes to idle until it was triggered externally. After the measurement, the device transmits the data and waits for the next external trigger. This is useful to minimize power consumption of the device when using longer measurement intervals. When using the external trigger options, the Pre-Trigger Mode can be used to enable the pre-phase before the actual trigger. After the pre-trigger, the device waits for some milliseconds for the main trigger. If the main trigger does not occur within max. 40 ms after the pre-trigger, the devices and start their measurements simultaneously or at a defined time.

Table 2 Trigger Input Modes

Trigger Input Mode	Description
Self-Trigger	Device triggers itself for measurements; continuous transmission of measurement data / ramp group
External Trigger	Device waits for external trigger input for each measurement / ramp group
External Trigger with Pre-Trigger	Device waits for external pre-trigger and then for main trigger input for each measurement / ramp group

Table 3 Trigger Inputs for External Trigger and Pre-Trigger

Trigger Input	Description
Trigger command	One of !M\r\n, !N\r\n, or !L\\r\n via UART
Trigger input line	Pin 16 on connector PX2 of the baseboard, pin 60 (PD_13) of processor

A ramp trigger output signal is generated with each ramp. The trigger signal switches to high with the start of the ramp and to low with the end of the ramp.

Table 4 Trigger Output Modes

Trigger Output Mode	Description
Ramp trigger	Switches to high with the start of each ramp and to low with the end of each ramp

Table 5 Trigger Outputs

Trigger Output	Description
Trigger output line	Pin 14 on connector PX2 of the baseboard, pin 59 (PD_12) of processor

1.3 Ramp Modes

If the Self-Trigger Mode is switched on (default), the device sends a group of ramps for each measurement, also shown in Figure 3 (right). The number of ramps can be adjusted and also set to single ramps as shown in Figure 3 (left). The time between the ramp groups or single ramps is time needed for processing and data output and varies with the chosen device settings. The time can be minimized by switching off unnecessary data output and choosing less complex computation and measurement settings. Figure 3 shows the ramping with AGC Mode switched off.

Figure 3 Single Ramp vs. Ramp Group (Set of Ramps)

Figure 4 (left) shows the time between the ramps in a ramp group is time needed for pre-processing and cannot be minimized or removed. Figure 4 (right) shows an example of the ramping with AGC Mode switched on. The first two ramps are used for determining the gain and not for the measurement itself vs. Figure 4 (left) with the AGC Mode turned off (increases the update rate of the device).

Figure 4 Ramps Group Details

1.4 CFAR Operator

Constant false alarm rate (CFAR) operators are used to calculate an adaptive threshold above the noise floor. Due to the characteristics of usual target spectra, it can be used as an efficient way to achieve a guaranteed detection threshold and reduce false alarms.

The *SiRad Easy® r4* supports three CFAR algorithms (CA-CFAR, CFAR-GO and CFAR-SO). Section 3.3.4 explains how to change the CFAR operator and its settings. As an example, a standard CA-CFAR operator that calculates the average from reference cells for the CFAR is explained in Figure 5. The CA-CFAR calculates the average of a number of reference cells as a way to detect targets. However, such a standard CFAR operator might not be ideal in every target situation or for every application. It should be optimized for the specific measurement task. Therefore, the *SiRad Easy® r4* has options to output the FFT data before the target detection took place, for third-party processing tuned to the intended target application.

Figure 5 Schematic description of the CACFAR operator

1.5 <u>Tuning Options</u>

How to tune and speed up the SiRad Evaluation Kits, please visit our Wiki <u>Tuning</u> page. For example, configuration please see our Wiki <u>Output Modes</u> page.

2 Supported Protocols

The *SiRad Easy*[®] *r4* communicates via UART. The UART protocol is (extended) ASCII based and supports communication to any PC / microcontroller / device that supports the UART settings in Section 2.1 and that implements the communication protocol described in this document. There are three output modes (WebGUI, TSV, Binary; explained in Section 5 and 7) but only one way to control the device via input commands, explained in Section 3. The kit supports the Silicon Radar WebGUI for graphical control but also terminal programs, TSV output (Tab Separated Values) for import into spreadsheet / third party software or logging to text files and binary output for faster communication to other microcontrollers. The kit always starts up with the WebGUI protocol enabled after power on. The output modes can be switched in the WebGUI or using the protocol commands described in this document from a terminal program or a third-party control software. The TSV and binary output modes are not supported by the WebGUI.

2.1 UART Settings

The following UART settings apply: 230400 baud or 1 Mbaud - depending on flashed firmware, 8 data bits, 1 start bit, 1 stop bit, no parity, no flow control.

2.2 Software Compatibility

		cy solutione	
Protocol	SiRad WebGUI	Terminal programs	Third Party / uC / Own Software
WebGUI	х	x	(X) ¹
TSV	-	x	(X) ²
Binary	-	x	(X) ³

Table 6 Compatibility of WebGUI and Third-Party Software

2.3 Supported Data Frames per Output Mode

You can find the supported data frames by each protocol in Table 7. Data frames that are not supported by TSV or binary output modes can still be sent while using TSV or binary mode, but the data format of these frames will be in the WebGUI format.

Data Frame	Description	WebGUI	TSV	Binary
ADC raw data frame	Contains ADC raw data (I/Q)	-	Х	Х
Range frame	Contains distance data extracted from the FFT	х	х	х
Phase frame	Contains phase information extracted from the FFT	Х	Х	Х
CFAR frame	Contains the output of the CFAR operators	Х	Х	Х
Target list frame	Contains the target list with the detected targets	Х	Х	Х
Status update frame	Contains status data updates	х	х	-
Error info frame	Contains basic error information	Х	-	Х
Detailed error info frame	Contains detailed error information	Х	-	-
System info frame	Contains hardware information	Х	-	-
Info Frame	Contains hardware and firmware information	-	-	х
Version info frame	Contains hardware and firmware information	X	-	-
Parameter frame	Contains parameters/settings	-	-	Х

 Table 7
 Supported Data Frames per Output Mode (WebGUI vs. TSV vs. Binary)

¹ If WebGUI format is implemented.

² If data format of tab separated values is supported / implemented.

³ If binary data format is supported / implemented.

2.4 Terminal Program (Send / Receive)

You can use a terminal program to receive data and send command strings as, for example, shown in Figure 6 with the terminal program "<u>Realterm</u>". Put in the UART settings explained in Section 2.1 to the "Port" tab and connect to the system with "Open". Per default, the system sends data in the WebGUI output format as shown in Figure 6.

7/-FDED/0212/-FF1A/0286/ B/0028/00AE/0053/008E/00 0139/-FE8C/-FFA9/0016/-F A/016F/007C/007B/0138/-F 1/0128/-FF54/0069/-FF87/ EFD/0011-FF6F/0198/017A -FF9F/011A/-FECB/0024/-F F/-FF3B/0057/-FE6/01AB/ 027/0188/0200/-FF12/0117 ED2/009B/-FF4B/0075/-FFB /-FFBD/-PFE2/0012/-FF92/ 013C/-FEDF/00088/-FF82/-FF 90-CF50/0048/-FF3B/0045 -FF8D/-003E/0038/-0000/-FF 67/009B/0124/013E/00FB/- (0052/00212/-0F3B/0008/-FF3B/0005/- 67/009B/0124/013E/00FB/- (0052/00212/00588/-FF3B/0005/-FF3B/00058/- 002022/00588/00212/0058/- 00408/003E/0038/0000/-FF5B/0005/-FF3B/00058/- 002022/0058/-00202- 00008/00212/-FF3B/00058/- 00008/00212/00088/-FF3B/00058/- 00008/00212/00088/-FF3B/00058/- 00008/-00202- 00008/00212/-00088/-FF3B/00058/- 00008/-00202- 00008/-00202- 00008/-00202- 00008/-00202- 00008/-00202- 0008/-00202- 0008/-00202- 0008/-00202- 0008/-00202- 0008/-00202- 0008/-00202- 0008/-00202- 0008/-00202- 0008/-00202- 0008/-00202- 0008/-00202- 0008/-00202- 0008/-00202- 0008/-00202- 0008/-00202- 0008/- 00	0172/0020/0147/-FF22/-FF7E/0084/-FF15/01C0/0000 /71/00ED/-FFC8/0072/-FFFB/0014/00C2/0087/00D8/02 /F63/0015A/00E9/005D/0118A/-FE9/0098/-FEC5/-FF13/ /F74/0033/-FF67/-FF4E/0087/-FF6A/0126/-FFFE/00E4 -FF4E/0082/-FF59/01AC/0112/005C/0218/-FE52/0099 /-FFCE/0082/09/-FDEA/0039/-FEE0/-FEE4/0082/-FF79/0 /F1C/-FF30/0023/-FEC7/0155/0013/008D/00F7/-FF9/0 /F1C/-FF30/0023/-FEC7/0155/0013/008D/00F7/-FF9/0 /-FFCE/0001/0026/-FF98/016/20166/0016/00327/-FEF 16/008C/-FF8E/0131/-FF22/0128/-FE23/008A/-FE8E/0 006C7/-FFEF2/0086/-FF92/016F/0166/0012/0237/-FEF /F90/-FFE9/0085/-FF92/016F/0166/0012/0237/-FEF /00C7/-FFE2/0086/-FF92/0055/-FFE7/011E/-FEC7/0086 ///// //// //// //// //// //// //// //// //// //// //// //// //// //// //// //// //// //// //// /// //// //// /// //// /// /// /// /// /// /// /// /// /// /	★9168×812 14/~FEEC× 8058/~FF0 8095×406 ~FECA×-F 130×8186× 8071/~FF1 85×81F8×8 8071×-FF1 85×81F8×8 816×7
Display Port Capture Pins S 1500113A0A 0 <u>^C</u> LF Rgpeats 1 Dump File to Port C UtempVcapture.bd	send Echo Port 12C 12C2 12CMisc Misc	Status Disconnect PXD (2) TXD (3) CTS (8) DCD (1) DSR (6) Ring (9) BREAK Enox

Figure 6 Send and Receive Using a Terminal Program

Calculate command strings by converting the desired command bits into HEX string format. An example command⁴ is shown in Figure 7, the resulting HEX string is shown in Figure 8. Use zeros for any RESERVED (grey) fields.

	Bit	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
SYS_CONFIG		Self	TrigDe	elay		eserve	đ////	LE	ED			t,	eserve	đ			RAW	rest	AGC	Ga	ain	SER2	SER1	EXT	ST	TL	Р	С	R	DC	res	SLF	PRE
Binary		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	1	0	1	1	1	0	1	0

Bit	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
SYS_CONFIG	Sel	fTrigD	elay		eserve	¢////	LI	ED			iliilit t	eserve	d////			RAW	rest	AGC	Ga	ain	SER2	SER1	EXT	ST	TL	Р	С	R	DC	tes	SLF	PRE
HEX		(2			()			(0)	-			1	-		9					В			4	4	

Figure 8 Example: System Configuration in HEX String Format

Add the start marker '!' and the frame identifier to the front of the HEX string command to form the command string. The command formats are explained in Section 3. For the example in Figure 8, you would get the command string

!S000049BA\r\n

Paste the command string into your terminal program and send it to the device. In "Realterm", the command can be pasted into the "Send" tab as shown in Figure 6. Then activate CR and LF, depending on if you already added "\r\n" to the command or not, to let "Realterm" add the stop markers to the string automatically, and then click "Send ASCII".

⁴ Please refer to the relevant sections below for the actual command.

2.5 Output Mode Configuration (Examples)

Some examples of how to change the output modes are given in the following sub sections.

2.5.1 Change Output Mode and Data from the WebGUI (WebGUI or TSV)

- Open the Com2WebSocket tool, select 230400 baud or 1M baud (depending on the flashed firmware version), the correct COM port assigned to the kit by the OS, and connect to the kit
- Open the WebGUI and connect to the WebSocket provided by the Com2WebSocket tool
- (Optional) Set any desired RF, processing and target recognition parameters
- Change to the "Output Data" tab
- Chose the protocol type with the "Protocol Type" slider
- Select the desired output data checkboxes

From that moment on, the system transmits the selected data frames and it can be disconnected from the WebGUI and the Com2WebSocket tool, if needed.

2.5.2 Change to TSV Output Mode from a Terminal Program

- Find your desired bit settings in the "System Configuration" command, Section 3.3.1
- Set the "Protocol" bits in the "System Configuration" command to "001" (TSV)
- Send the command to the system

The output should change to the desired output mode.

2.5.3 Change to Binary Output Mode from a Terminal Program

- Find your desired bit settings in the "System Configuration" command, Section 3.3.1
- Set the "Protocol" bits in the "System Configuration" command to "010" (BIN)
- Send the command to the system

The output should change to the desired output mode.

2.5.4 Activate ADC Raw Data (I/Q) Output from a Terminal Program

- Use the "System Configuration" command settings from 2.5.2 or 2.5.3
- Find your desired bit settings in the "Baseband Configuration" command, Section 3.3.4

To enable un-windowed ADC raw data output:

- Set the "RAW" bit in the "System Configuration" command
- Unset the "WIN" bit in the "Baseband Configuration" command

To enable windowed ADC raw data output:

- Set the "RAW" bit in the "System Configuration" command
- Set the "WIN" bit in the "Baseband Configuration" command

To enable/disable DC cancellation:

• Set the "DC" bit in the "Baseband Configuration" command accordingly

Then send both commands to the device.

2.5.5 Activate Complex FFT Data Output from a Terminal Program

- Use the settings from 2.5.2 or 2.5.3
- Set the "CPL" bit in the "System Configuration" command
- Send the command to the device

3 Commands (Input) – WebGUI & TSV Mode

3.1 Command Frames

Each command frame starts with ASCII value 33 ('!') as start marker and ends with two ASCII command characters ('CR' and 'LF') as stop marker, also see the blue parts in Figure 9. Orange parts indicate data parts (explained later in this section).

Command frames					-					_	-		_
Configuration command	Start	Identifier		Сог	mmar	nd set	tings (8 Dig	;its)	s	top		
System configuration		S			SY	′S_C	ONF	IG					
Radar frontend config.		F			RF	E_C	ONF	IG					
PLL configuration	1	Р			Pl	L_C	ONF	IG		CR	LF		
Baseband configuration		В			В	B_C	ONFI	G					
Programming mode		W			Prog	Mo	de (fi	xed)				
Short command	Start	Identifier	St	ор									
Get full error report		E											
Get system info		1											
Do frequency scan		J											
Set to max. bandwidth		К	CD										
Send Pre-Trigger	!	L	CK	LF									
Send Trigger		М				1	Star	t Ma	rker, lo	dentifi	er an	d Stop	Mar
		N				х	Hex	Digi	t	[0,2	.,2,,	A,B,C,I	D,E,F
Send both Triggers (L, M)													

Figure 9 Command Frames

3.2 Hardware and Software Compatibility

 Table 8
 Command Frames Compatibility with SiRad Easy® r4 and WebGUI

Command Frame	Identifier	SiRad Easy® r4	WebGUI
System configuration	S	x	x
Radar front end configuration	F	x	х
PLL configuration	Р	x	х
Baseband configuration	В	x	х
Programming mode	W	-	-
Get full error report	E	x	x
Get system info	1	x	x
Do frequency scan	J	x	x
Set to max. bandwidth	К	x	x
Send pre-trigger (optional)	L	x	-
Send (main) trigger	М	x	-
Send both triggers (L, M)	Ν	x	-
Get version info	V	X	X

3.3 Configuration (Long) Commands

The commands in Table 9 contains data for the configuration of the device and are explained in the following sections. The configuration commands are available in all output modes.

<u> </u>			
Command Frame	Identifier	Answer	Description
System configuration	S	х	Configure basic functions of the system
Radar front end configuration	F	х	Configure front end base-frequency
PLL configuration	Р	Х	Configure the bandwidth of the frequency ramp
Baseband configuration	В	Х	Configure baseband and processing related parameters

Table 9Configuration Commands

3.3.1 System Configuration

The system configuration command configures basic functions of the system, including triggering, LED, data output, and gain. When the ERR, ST, TL, P, C, R, CPL, or RAW bits are enabled, the according frame will be output after each measurement. Use these bits to switch the transmission of these frames on or off. Switching unnecessary frames off can increase the update rate of the device significantly.

Please note that, if the wrong connection option is selected, there will be no data displayed in the WebGUI. However, *SiRad Easy® r4* always listens on both serial ports, so reconfiguration is possible any time.

		Bit	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
SYS_C	ONFI	G	Self	TrigD	elay	CL	LOG	FMT	LE	D		rese	rved		Prot	ocol	AGC		Gain		SER2	SER1	ERR	ST	TL	С	R	Р	CPL	RAW	tes	res	SLF	PRE
Self	TrigD	elay					LE	D							AGC							SER2						SLF						
0	0	0	0	ms			0	0	0	ff					0	au	ito ga	in cor	ntrol o	off		0	out	put o	n SER	2 off		0	exte	rnal t	trig m	ode	1	
0	0	1	2	ms			0	1	1st ta	arget					1	au	ito ga	in coi	ntrol c	on		1	out	put o	n SER	2 on		1	sta	andar	d mo	de	1	
0	1	0	4	ms				Ø	rese	veđ																								
0	1	1	8	ms			X		reset	ved					Prot	ocol						SER1						PRE						
1	0	0	16	ms											0	0	v	VebG	JI			0	out	put o	n SER	1 off		0	sta	andar	d mo	de		
1	0	1	32	ms			FMT								0	1	TS	V out	put			1	out	put o	n SER	1 on		1	us	e pre	-trigg	ger		
1	1	0	64	ms			0	TL	mm d	listar	ice				1	0	BIN	N out	out															
1	1	1	128	ms			1	TL	. cm d	istan	ce						///86	serve	2 d ///				Gain					c	lata fi	rames	s	off	on	
																						0	0	0	0			RAW	ra	w AD	DC	0	1	
LOG							CL															0	0	1	1			CPL	cm	nplx F	FT	0	1	
0		log I	MAG				0	0	DC Co	uplin	g											0	1	0	2			Р	F	ohase	5	0	1	
1		linear	MAG	ì			1	A	AC Co	uplin	g											0	1	1	3			R	ma	gnitu	ide	0	1	
																						1	0	0	4			С		CFAR	1	0	1	
																						1	0	1	5			TL	tai	rget li	ist	0	1	
																												ST	5	status	5	0	1	
																												ERR		error		0	1	

Figure 10 System Configuration Frame Format

Bit	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
SYS_CONFIG	Sel	fTrigD	elay	CL	LOG	FMT	LI	ED		rese	rved		Prof	tocol	AGC		Gain		SER2	SER1	ERR	ST	TL	С	R	Р	CPL	RAW	ses	res	SLF	PRE
EASY 120 GHz	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	1	0	0	0	0	0	1	0
EASY 24 GHz	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	1	0	0	0	0	0	1	0

Figure 11 System Configuration Default Bit Settings

Table 10 System Configuration Default Commands

SYS_CONFIG command for device	Resulting command
SiRad Easy®	!S11022F82

Table 11System Configuration Bits

Format Field	Field Size	Description
SelfTrigDelay	3 bits	Sets a delay time between Self-Trigger events
LOG	1 bit	Sets scaling type of magnitude data; when set to 0, magnitude data is in dB; linear scaled magnitude outputs are ONLY useful for TSV or binary output format
CL	1 bit	Coupling mode of Baseband amplifier
FMT	1 bit	Select the data output format: mm / cm
LED	2 bits	When set to 1st target rainbow, the LED displays the distance of the first recognized target as a color from blue (far) over green (medium range) to red (close). The current maximum range is used as a reference.
Protocol	2 bits	Protocol type for data output: WebGUI, TSV (tab separated values) and binary; TSV and binary outputs are NOT displayed in the WebGUI
AGC	1 bit	Auto Gain Control Mode: overrides the manual settings in the 'Gain' field. Uses 2 ramps at the beginning of the measurement or the pre-trigger phase for gain measurement (if 'Pre-Trigger' Mode is switched on).
Gain	3 bits	Manual gain setting; overridden by the AGC bit, which enables Auto Gain Control. See Table 1 for dB gain values
SER1	1 bit	UART connection to the pin header
SER2	1 bit	USB connection on the Easy; configuration data can be fed to the device using both UARTs at any time
ERR	1 bit	Enables the Error Information frame
ST	1 bit	Enables the Status Information frame
TL	1 bit	Enables the Target List frame
Р	1 bit	Enables the Phase frame
С	1 bit	Enables the CFAR frame
R	1 bit	Enables the Magnitude / Range frame
CPL	1 bit	Enables the Complex FFT data frame; NOT displayed in the WebGUI
RAW	1 bit	Enables the ADC raw data (I/Q) frame; NOT displayed in the WebGUI
PRE	1 bit	Enable pre-trigger (applies only in External Trigger Mode)
SLF	1 bit	Switch between Self-Trigger and External Trigger Mode

3.3.2 Radar Front End Configuration

The radar front end configuration command configures the start (or base) frequency for the front end. The base frequency can be set in 250 kHz steps. Each front end has a slightly different minimum and maximum operating frequency due to production tolerances.

IMPORTANT:

The radar front ends are able to use a larger bandwidth than what is allowed in the ISM bands. In most countries, the bandwidth is limited to 1 GHz between 122 GHz and 123 GHz for production purposes by law. Please check your local regulations. It remains the customer's responsibility to assure the operation of the front end according to local regulations, especially applying to frequency band allocations outside of the laboratory environment. Silicon Radar and its distributors will not accept any responsibility for consequences resulting from the disregard of these instructions and warnings.

			Bit	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
I	RFE_(CONFI	G					////	serv	≥d///											Rada	r Fron	itend	Base	Freq	uency	[MH	z] (21	Bits)						
							Rada	r Froi	ntend	Base	Freq	uenc	/ [MH	z] (21	Bits)																				
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	kHz											
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		250	kHz											
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	52	4287	MHz											

Figure 12 Radar Front End Configuration Frame Format

В	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
RFE_CONFIG						///se	serve	đ											Rada	r Fron	tend	Base	Freq	uency	/ [MH	lz] (21	Bits)						
EASY 120 GHz		0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	1	0	1	0	1	0	0	1	1	0	0	0	0	0	0	0	0
EASY 24 GHz		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0

Figure 13 Radar Front End Configuration Default Bit Settings

Table 12 Radar Front End Configuration Default Commands

RFE_CONFIG command for device	Base Frequency	Resulting Command
SiRad Easy [®] @24 GHz	24000 MHz	!F00017700
SiRad Easy [®] @120 GHz	120000 MHz	!F00075300

Table 13 Radar Front End Configuration Bits

Format Field	Field Size	Description
RF Base frequency	21 bits	The base-frequency plus chosen bandwidth should not exceed the maximum operating frequency

3.3.3 PLL Configuration

The PLL configuration command sets the bandwidth for the radar front end. The bandwidth can be configured in 2 MHz steps. A negative bandwidth can be set as well, the charge pump output of the PLL will be inverted.

IMPORTANT:

The radar front ends are able to use a larger bandwidth than what is allowed in the ISM bands. In most countries, the bandwidth is limited to 1 GHz between 122 GHz and 123 GHz for production purposes by law. Please check your local regulations. It remains the customer's responsibility to assure the operation of the front end according to local regulations, especially applying to frequency band allocations outside of the laboratory environment. Silicon Radar and its distributors will not accept any responsibility for consequences resulting from the disregard of these instructions and warnings.

	-		Bit	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
I	יור	CONFI	G								rese	rved								-		-	-		Ba	ndwid	dth [l	MHz]	(16 B	its)	-				
			-		-	Ba	andwi	dth [I	MHz]	(16 Bi	its)	-	-																						
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		-2	MHz																
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0		-4	MHz																
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-6	5536	MHz																
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	MHz																
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		2	MHz																
	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	+6	5534	MHz																

Figure 14 PLL Configuration Frame Format

E	Bit	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
PLL_CONFIG									tese	rved													Ba	indwi	dth [I	MHz]	(16 Bi	ts)					
EASY 24 GHz		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0
EASY 120 GHz		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	0	0	0	1	0	0
															-												-						

Figure 15 PLL Configuration Default Bit Settings

Table 14 PLL Configuration Default Commands

PLL_CONFIG command for device	Bandwidth	Resulting Command
SiRad Easy [®] @24 GHz	1000 MHz	!P000001F4
SiRad Easy [®] @120 GHz	5000 MHz	!P000009C4

Table 15 PLL Configuration Bits

Format Field	Field Size	Description
Bandwidth	16 bits	Negative values result in falling ramp slope, positive values in a rising saw tooth; representation in two's complement

Table 16 Minimum Full Bandwidth per Radar Front End (Examples)

Radar Front End	Bandwidth	Resulting Command
TRX_024_046	2600 MHz	!P00000514
TRX 120 001 & TRX 120 067 & TRA 120 002	5500 MHz	!P00000ABE
TRA 120 045	14200 MHz	!P00001BBC

3.3.4 Baseband Configuration

The baseband configuration command configures baseband and processing related parameters: sampling parameters, DC cancellation, windowing, down sampling, FIR Filter, FFT parameters, and CFAR parameters.

			Bit	32	31	30	29	28	27	26	25 24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3 2	1
B	3_CC	NFIG	3	WIN	FIR	DC	CF	AR	CFA	R Thre	shold [dB]		CFAF	R Size		CFAF	R Grd	Aver	age n	F	FT Siz	e	Dow	nsam	pling	#	Ramp	os	# 5	Sampl	les	ADC C	lkDiv
V	VIN							F	FT Siz	ze			Dow	nsam	pling			#	Ramp	os			# 9	Samp	es				AD	C Clk	Div	MS/s	
	0	wi	indov	ving	off			0	0	0	32		0	0	0	0		0	0	0	1		0	0	0	3	32		0	0	0	1.800	
	1	wi	indov	wing	on			0	0	1	64		0	0	1	1		0	0	1	2		0	0	1	e	54		0	0	1	1.000	
								0	1	0	128		0	1	0	2		0	1	0	4		0	1	0	1	28		0	1	0	0.675	
	FIR							0	1	1	256		0	1	1	4		0	1	1	8		0	1	1	2	56		0	1	1	0.397	
	0	F	IR fil	ter of	f			1	0	0	512		1	0	0	8		1	0	0	16		1	0	0	5	12		1	0	0	0.28125	5
	1	F	IR fil	ter o	n			1	0	1	1024		1	0	1	16		1	0	1	32		1	0	1	10	024		1	0	1	0.218	
	_							1	1	0	2048		1	1	0	32		1	1	0	64		1	1	0	20)48		1	1	0	0.173	
	DC							(N)	(/X)		reserved		1	1	1	64		1	1	1	128			11	<u> </u> <u>N</u>	rese	rved		1	1	1	0.055	
	0	DC c	ance	llatio	n off																												
	1	DC c	ance	llatio	n on		CF	AR				CFA	R Thre	shold	[dB]	dB				CFAF	R Size				CFAF	R Grd			Avera	age n			
							0	0	C	A-CF/	٩R	0	0	0	0	0			0	0	0	0	0		0	0	0		0	0	0		_
							0	1	G	O-CF	AR	0	0	0	1	2			0	0	0	1	1		0	1	1		0	1	1		_
							1	0	S	O-CF/	AR														1	0	2		1	0	2		
							//X//	<u>//X//</u>	////88	serv	5Ø////	1	1	1	1	30			1	1	1	1	15		1	1	3		1	1	3		

Figure 16 Baseband Setup Frame Format

В	it	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
BB_CONFIG	١	NIN	FIR	DC	CF	AR	CFA	R Thre	shold	[dB]		CFAF	R Size		CFAF	Grd	Avera	age n	F	FT Siz	e	Dow	nsam	oling	#	Ramp	DS .	# 9	Samp	les	AD	C Clk	Div
EASY		1	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	1	1	0	0	0	0	0	1	0	0	1	0	0	1	0	1

Figure 17 Baseband Setup Default Bit Settings

Table 17 Baseband Setup Default Commands

BB_CONFIG command for device	Resulting Command
SiRad Easy®	!BA452C122

Table 18 Baseband Setup Bits

Format Field	Field Size	Description
WIN	1 bit	Enables Windowing on the samples before performing the FFT
FIR	1 bit	Enables the FIR filter
DC	1 bit	Enables digital de-trending and static offset compensation
CFAR	2 bits	Select the CFAR operator
CFAR Threshold	4 bits	CFAR threshold value added to average of the CFAR operator; value range is 0 to 30 in step size of 2
CFAR Size	4 bits	Number of cells left and right of the CFAR guard interval; value range is 0 to 15
CFAR Guard	2 bits	Number of guard cells left and right of the cell under test; value range is 0 to 3
Average n	2 bits	Selects how many FFTs are averaged
FFT Size	3 bits	Number of FFT points
Down Sample	3 bits	Down sampling factor
#Ramps	3 bits	Number of ramps used for each measurement
#Samples	3 bits	Number of samples used for each measurement
ADC ClkDiv	3 bits	Select the sampling frequency

<u>*Ramp time:*</u> The ramp time t is calculated using the selected sampling time t_{Smp} according to Table 19, the number of samples n_{Smp} and the set clock frequency of the ADCs according to Figure 16 / Table 19, like

Equation 1 Ramp Time

 $t [us] = t_{Smp} [clock cycles] * (n_{Smp} + 55) / (27 MHz),$

where 55 samples is a fixed overhead and 27 MHz the set sampling speed of the ADC.

Table 19Sampling time and sample frequency

ADC ClkDiv	ADC sampling time t _{Smp} [clock cycles]	Sample frequency [MS/s]
0	15	1.800
1	27	1.000
2	40	0.675
3	68	0.397
4	96	0.28125
5	124	0.218
6	156	0.173
7	492	0.055

Accuracy: the width of one distance bin according to

Equation 2 Accuracy

$$acc = c * (n_{Smp} + 55) / (2 * BW * n_{FFT} * 2^{ndown})$$

where c is the speed of light, BW the bandwidth, n_{Smp} the number of samples, 55 samples a fixed overhead, n_{FFT} the FFT size, and n_{down} the down sampling factor.

<u>Downsampling</u>: determines how many samples are averaged after sampling. Higher down sampling values improve the accuracy but reduce the maximum range. Voids are filled with zeroes when down sampling. A down sampling factor of 0 means no down sampling, 1 means average of 2 values, 2 means average of 4 values, etc.

3.4 Special Function (Short) Commands

The following short commands do not contain any data and perform a single request or action only. They are available in all output modes but their answers are only sent in WebGUI output format. Please see Section 5 for their formats.

Command Frame	Identifier	Answer	Description
Do Front End scan	А	-	Auto detect and pre-configure Front End
Get detailed error report	E	Х	Request detailed error report
Get system info	1	Х	Request system info data
Do frequency scan	J	-	Scan true min and max frequency of the RFE and sets start frequency to true min frequency
Set to max. bandwidth	к	-	Set bandwidth according to the scanned true min and max frequencies of the RFE
Send pre-trigger (optional)	L	-	Send pre-trigger for an automatic gain measurement (AGC Mode)
Send (main) trigger	М	-	Send a trigger for a measurement
Send both triggers (L, M)	N	-	Send pre-trigger and main trigger in one command
Get version info	V	х	Request version info data
Programming mode	W	-	Go to programming mode for flashing the device

Table 20 Special Function Commands

3.5 <u>Timing and UART Receive Buffer</u>

There are no timing constraints when sending commands to the device, however, the UART receive buffer in the device has a limited size of 128 bytes, which limits the number of commands that can be send in a row. This has to be taken into consideration when sending commands to the device. Commands are processed after each measurement cycle. If multiple commands need to be sent in a row and their total size exceeds 128 bytes, they have to be split and a part of them has to be sent after the next measurement cycle.

4 Commands (Input) – Binary Mode

Each parameter that can be set on the kit has a different keyword. The general conventions of setting parameters are:

PARAM = [value, MAX, MIN, DEF];\r\n PARAM = [value, MAX, MIN, DEF]\r\n PARAM

For setting a value and NOT return the set value afterwards. For setting a value and returning the set value afterwards. For requesting the value of a parameter.

'PARAM' is the specific keyword of a parameter. Sending the command with 'MAX' will set the parameter to its maximum available value, 'MIN' will set it to its minimum available value as well as 'DEF' will set it to its default value. Other than these, command can be sent with number which should be within the possible range. Using semicolon (;) at the end of the command will only affect whether the current value of the parameter is requested. Please note that some parameters can only be set with strings, so 'MIN' and 'MAX' commands are not applicable for these parameters. In below table " indicates a string parameter but the " is to be omitted from commands.

4.1 <u>Commands</u>

Keyword	Allowed Values	Default	Description
AGCMode	"ON", "OFF"	"ON"	Auto Gain Control Mode overrides the manual settings in the 'Gain' field. Uses 2 ramps at the beginning of the measurement to measure the gain.
AmpGain	0 to 5, see Table 1 for dB values	х	Manual gain setting, only effective when AGCM (Auto Gain Control) is off.
Bandwidth	32-bit floating point	х	Bandwidth for the radar front end in MHz
Baud	32-bit unsigned integer	230400	Recommended: 115200, 230400, 10000000, other values might not work as good
CFARAlgo	"CA", "GO", "SO"	"CA"	Select the type of CFAR operator (CA-CFAR, GO-CFAR, SO-CFAR)
CFARGuard	Integer, 0 to 3	1	Number of guard cells left and right of the cell under test
CFARSize	Integer, 0 to 15	10	Number of cells left and right of the CFAR guard interval
CFARThres	Integer, 0 to 31, in dB	16	CFAR threshold value added to average of the CFAR operator
Coupling	"AC", "DC"	"AC"	Coupling mode of Baseband amplifier
DCCancel	"ON", "OFF"	"ON"	Enables or disables digital de-trending and static offset compensation
DownSample	0, 1, 2, 4, 8, 16, 32, 64	0	Down sampling factor
FBase	32-bit floating point	х	Start (or base) frequency of the radar front end in MHz
FFTAvg	Integer, 0 to 3	0	Selects how many FFTs are averaged
FFTSize	32, 64, 128, 256, 512, 1024, 2048	512	Number of FFT points
FIRFilter	"ON", "OFF"	"OFF"	Enables or disables FIR Filter
FSample	See Table 19		Select the sampling frequency
LedMode	0 (Off), 1 (First target rainbow)	1	The distance of the first recognized target as a color from blue (far) over green (medium range) to red (close). The current maximum range is used as a reference.
MagScale	"LOG", "LIN"	"LOG"	Sets scaling type of magnitude data; Linear or Log
NumRamps	1, 2, 4, 8, 16, 32, 64, 128	16	Number of ramps used for each measurement
NumSamples	32, 64, 128, 256, 512, 1024, 2048	512	Number of samples used for each measurement
OutCFAR	"ON", "OFF"	"ON"	Enables or disables the CFAR Data Frame
OutError	"ON", "OFF"	"ON"	Enables or disables the Error Frame
OutFFTComplex	"ON", "OFF"	"OFF"	Enables or disables the Complex FFT Data Frame
OutMag	"ON", "OFF"	"ON"	Enables or disables the Magnitude/Range Frame
OutPhase	"ON", "OFF"	"OFF"	Enables or disables the Phase Data Frame
OutTargetList	"ON", "OFF"	"ON"	Enables or disables the Target Data Frame
OutTimeDomain	"ON", "OFF"	"OFF"	Enables or disables the ADC Data Frame
Protocol	"TSV","BIN","WEBGUI"	"WEBGUI"	Protocol type for data output: TSV (tab separated values), WebGUI and binary
TrigMode	"EXT", "SELF"	"SELF"	Selects the triggering mode, External or Self Trigger
UARTHeader	"ON", "OFF"	"OFF"	UART connection to the pin header
UARTUsb	"ON", "OFF"	"ON"	UART connection to the USB; config can be fed to device using both UARTs at any time
Window	"ON", "OFF"	"ON"	Enables or disables windowing on the samples before performing the FFT

Table 21 Parameter keywords and values

4.2 <u>Requests</u>

Some parameters cannot be set, however, be requested from the kit.

Keyword	Allowed Values	Description
Accuracy	32-bit floating point	Returns device accuracy in mm
Fscan	No output	Scan true min and max frequency of the RFE and sets start frequency to true min frequency
Info	See Section 7.4	Requests Info frame
MaxBandwidth	32-bit floating point	Sets maximum bandwidth in MHz
MaxRange	32-bit unsigned integer	Returns maximum range of device
Params	See Section 7.3	Requests Parameter frame
Reset	No output	Perform software reset
RFMax	32-bit floating point	Returns maximum base frequency
RFMin	32-bit floating point	Returns minimum base frequency
SetDefault	No output	Sets default parameters of the kit
Trig	Transmits selected output frames	Sends a trigger, only active in External Trigger mode
UpdateRate	16-bit unsigned integer	Returns update rate of device

5 WebGUI Output Mode (Default)

Once the devices is plugged to the USB, it begins sending WebGUI data. Figure 18 shows some of the supported WebGUI data frames and Figure 19 lists their purpose. The data is transmitted in blocks of certain data frames that are tied together in a single transmission, as highlighted in Figure 18. In the figure, two data blocks are marked red. Each data block ends with ASCII value 32 (' ', space) and additional stop marker and can contain multiple data frames of different size. In the example in Figure 18, the data blocks contain 5 data frames each. One data frame in the upper block is marked blue. Each data frame starts with ASCII value 33 ('!') as start marker and ends with two ASCII command characters ('CR' and 'LF') as stop marker.

The blue parts in Figure 19 indicate start and stop markers and the frame identifier, orange and green parts indicate data parts and grey parts indicate reserved parts that should not be used. Each frame type is recognized by a unique identifier (a certain letter) following the start marker of the frame. The frame types are of different size.

Figure 18 WebGUI Data (Default Communication) in a Terminal Window

Version 1.1 16-Nov-2022

WebGUI data frames																											
FFT and CFAR data	Start	Identifier	Si	ze n (4 Digi	its)	res	erved	(4 Digits	s) r	eserved	l (4 Di	gits)			Data	i (n D	igits)	>			St	top				
Magnitude/Range frame		R																									
Phase frame	1	Р		хх	хх			XX	XX		x x	× ×		С	С	с	С	с	С		с	CR	LF				
CFAR frame		C																									
										Block	, repea	ated 1	L6 tin	nes -	>	-											
Target information	Start	Identifier	For	mat	Gain	Targ	et #	Dist	tance (4	Digits) Mag	; I	Phi (4	Digits	5)	res	erved	(4 Di	gits)		St	top					
Target list frame	- ! -	Т		x	С)	(ххх	x	С		x x	хх			<u>* *</u>	<u> x/</u> >			CR	LF					
Status information	Start	Identifier	For	mat	Gain	Acc	uracy	(4 Di	gits) M	ax. ra	nge (4 I	Digits)	Ram	p time	e (4 D	igits)	Band	lwidt	h (4 D	igits)	Tim	e diff	. (4 Di	igits)	St	ор	
Status update frame	<u> </u>	U	;	x	с		хх	хх		х	ххх	(хх	хх	1		хх	хх			хх	хх		CR	LF	
Version information	Start	Identifier	Lei	ngth	UID	tag	'U' le	en L1	UID (L:	I) H	W tag	'H' I	en L2	нw	(L2)	PLL	tag	'P' le	en L3	PLL	(L3)	Q	tag	'Q' le	en L4	Q (I	4)
Version info frame	<u> </u>	V	хх	хх	'	ט'	х	x	L1 *	х	'H'	х	x	L2	* x	1	ס'	х	x	L3	* х	'(ם'	х	x	L4	* х
			_																								
			AD	C tag	'A' le	en L5	ADC	C (L5)	RFE ta	g 'F'	len L6	RFE	(L6)	SW	tag	'S' le	n L7	SW	(L7)	СР	tag	'C' le	an L8	СР	(L8)	Ste	эр
		$ \longrightarrow $		Α'	х	x	L5	* х	'F'		хх	L6	* х	'0	S'	х	x	L7	* х	'(C'	×	x	L8	* x	CR	LF
																							-				
System information	Start	Identifier	IVIIC	rocon	trolle		24 D	igits)	reserve			n⊦req	(5 Dig	its)	REI		Freq	(5 Di	gits)	St	op						
System info frame	!		Х	X	Х	Х		Х	U/X/X		X	X X	хх			x >	(X	xx	1	CR	LF		-				
Detailed error report	Start	Identifier			Erro	r flags	; (8 D	igits)			Stop		-										-				
Detailed error report	<u></u>	E			хх	хх	хх	x >	(С	R LF							1	Star	t Ma	rker	, Ide	ntifi	er an	d Sto	op Ma	arker
																		х	Hex	Digi	t		[0,1	,2,,	А,В,	C,D,E	,F]
Error information	Start	Identifier	Erro	r flag	s (4 D	igits)	St	top										с	Asc	ii Cha	aract	er	[de	cima	34.	. 255	
Error info frame	<u> </u>	E		хх	хх		CR	LF										с	Asc	ii Cha	aract	er	any	char	valu	e	

Figure 19 WebGUI Data Frame Formats (Default Communication)

5.1 Magnitude/Range, Phase and CFAR Output

The range frame contains the magnitude output of the FFT, the phase frame contains the argument or phase of the FFT. The CFAR frame contains the output of the CFAR operator that is used to detect targets. The range frame, phase frame and CFAR frame share the same frame formats, please see Figure 20. The start and stop markers and frame identifiers are highlighted in blue, data parts in orange and green color, reserved parts with grey stripes.

The size of this frame depends on the chosen FFT size. A certain FFT size will lead to half of the size of the FFT in the 'Size' field only. The FFT output is mirrored along the magnitude axis, so both parts are added together before the transmission and the length of the transmitted data is only half of the FFT output. The phase scaling factor is 110 for the WebGUI protocol.

FFT and CFAR data	Start	Identifier	Size n (4 Digits)	reserved (4 Digits)	reserved (4 Digits)		Data (n Digits)								Stop
Range frame		R													
Phase frame	1	! P x x x x // x x x x	x	с	с	с	с	с	с		с	CR	LF		
CFAR frame		С													

Figure 20	WahCIII Danga	Dhace and CEAD	Data Frama Farmat
Figure 70		Phase and CEAR	Data Frame Format
			2 4 4 4

Format Field	Field Size	Encoding	Example	Interpretation	Allowed Values
Size	4 digits	unsigned HEX between '0000' and 'FFFF'	'0200' -> 512	0 to 65535	'0010', '0020', '0040', '0080', '0100',
Data (R and C frame)	n digits	characters between decimal value 34 and 254	letter 'Z' -> decimal 90	-140 to +80 dB in 220 steps	34 to 254
Data (P frame)	n digits	characters between decimal value 34 and 254	letter 'Z' -> decimal 90	-π to +π rad (-180° to +180°) in 220 steps	34 to 254

Table 22 WebGUI Range, Phase and CFAR Data Bits

5.2 <u>Target Information</u>

The target list contains the targets recognized by the CFAR operator. A target is detected whenever the magnitude of the FFT exceeds the CFAR operator's threshold. The local maximum of that area is marked as a target. The target list frame format is shown in Figure 21.

The target information is repeated 16 times in the target list. All 16 target information blocks are sent, regardless whether the target blocks are filled with detected targets or not. Empty target information blocks of the list are filled with zeros. Each target information block consists of the 'Target #', 'Distance', 'Magnitude', and 'Phase' fields.

								repeated 16x				
Target information	Start	Identifier	Format	Gain	Target #	Distance (4 Digits	Mag	Phi (4 Digits)	reserved	d (4 Digits)	 Stop	Stop
Target list frame	<u>!</u>	Т	х	С	х	хххх	С	хххх	////×/×	<u> </u>	 CR	LF

Figure 21 WebGUI Target List Data Frame Format

Table 23 WebGUI Target List Data Bits

Format Field	Field Size	Encoding	Example	Interpretation	Allowed Values
Format	1 digit	unsigned HEX between '0' and 'F'	'F' -> 15	0 to 15	'0,1'
Gain	1 digit	character between decimal value 34 and 254, also see Table 1	letter 'Z' -> decimal 90	-140 to +80 dB in 220 steps	See Table 1
Target #	1 digit	unsigned HEX between '0' and 'F'	'F' -> 15	0 to 15	'0' to 'F'
Distance	4 digits	unsigned HEX between '0000' and 'FFFF'	'0200' -> 512	0 to 65535 in chosen unit	'0000' to 'FFFF'
Magnitude	1 digit	character between decimal value 34 and 254	letter 'Z' -> decimal 90	-140 to +80 dB in 220 steps	34 to 254
Phase	4 digits	signed HEX between '0000' and 'FFFF'	'0200' -> 512	-32768 to +32767 (-π to +π rad)	110*(-π to +π rad)
Format	4 digits	unsigned HEX between '0' and 'F'	'F' -> 15	0 to 15	'0,1'

Table 24 WebGUI Target List Data - Format Field

Format (HEX)	Description
0	distance in mm
1	distance in cm

5.3 Status Update

The status update frame in Figure 22 is a feedback of the current accuracy, range, ramp time, and ramp bandwidth and also returns the time difference since the last measurement. The time difference data is interpreted as values between 0 and 65535, which translates to 0 to 0.65535 seconds in 10 ms steps. For example, 'Time diff.' = 0200 is interpreted as 0x0200, which is 512 in decimal range. The time difference counter runs at 100 kHz and is configured as an overflowing 16-bit counter. Each tick lasts 10 ms and the counter overflows at 0.65535 seconds. Therefore, the minimum unambiguous measurement frequency is 1.5 Hz.

Status information	Start	Identifier	Format	Gain	Accuracy (4 Digits)	Max. range (4 Digits)	Ramp time (4 Digits)	Bandwidth (4 Digits)	Time diff. (4 Digits)	Stop	Stop
Status update frame	<u>!</u>	U	x	С	хххх	x	x	x	хххх	CR	LF

Figure 22 WebGUI Status Update Data Frame Format

Table 25	WebGUI Status Update Data Bits
----------	--------------------------------

Format Field	Field Size	Encoding	Example	Interpretation	Allowed Values
Format	1 digit	unsigned HEX digit between '0' and 'F'	'F' -> 15	0 to 15	'0, 1'
Gain	1 digit	character between decimal value 34 and 254, also see Table 1	letter 'Z' -> decimal 90	-140 to +80 dB in 220 steps	See Table 1
Accuracy	4 digits	unsigned HEX between '0000' and 'FFFF'	'0200' -> 512	0 to 65535 (0 to 6553.5 mm)	'0000' to 'FFFF'
Max. Range	4 digits	unsigned HEX between '0000' and 'FFFF'	'0200' -> 512	0 to 65535 in chosen unit	'0000' to 'FFFF'
Ramp time	4 digits	unsigned HEX between '0000' and 'FFFF'	'0200' -> 512	0 to 65535 in us	'0000' to 'FFFF'
Bandwidth	4 digits	unsigned HEX between '0000' and 'FFFF'	'0200' -> 1024, in 2 MHz steps	-32768 to +32767, Interpretation = -65536 to 65534 in MHz (2 MHz steps)	'0000' to 'FFFF'
Time diff.	4 digits	unsigned HEX between '0000' and 'FFFF'	'0200' -> 512	0 to 65535 (0 to 0.65535 s)	'0000' to 'FFFF'

5.4 Error Information

The error info frame includes error bits that may be raised temporarily during the signal processing of the radar data and may be removed when changing the settings. This frame will be sent by default and can be deactivated by setting 0 to the "ERR" bit in the system configuration command. The 'Error flags' field is transmitted as a 4-byte unsigned HEX number (marked with 'x' in Figure 23). Figure 24 shows the error bits in the 'Error flags' field.

Error information	Start	Identifier	Error flags (4 Digits)	Stop	Stop
Error info frame	<u>!</u>	E	хххх	CR	LF

Figure 23 WebGUI Error Information Data Frame Format

Error domains:

- FLS: <reserved>
- PRC: temporary errors in the signal processing
- BB: temporary baseband processing errors
- PLL: temporary PLL configuration errors
- RFE: temporary radar front end configuration errors
- CRC: temporary errors in the UART transmission or CRC checksum

		Bit	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
ERR	OR					rese	rved							rese	rved								rese	rved					FLS	PRC	BB	PLL	RFE	CRC
																	FLS						BB						RFE					
																	0		noe	error			0		no e	error			0		no e	rror		
																	1		Flash	error	r		1	Ba	seba	nd er	ror		1	Fr	onter	nd err	or	
																	PRC						PLL						CRC					
																	0		noe	error			0		no e	error			0		no e	rror		
																	1	Pro	ocess	ing er	ror		1		PLL	error			1		CRC	error		

Figure 24 WebGUI Error Information Data Bits

5.5 <u>IE Command – Answer: Detailed Error Report</u>

The detailed error report contains error bits that may be raised temporarily during the signal processing of the radar data and may be removed when changing the settings. This frame contains specific error information, other than the standard Error Information frame explained in Section 5.4, which reports only the processing domains that experience an error. Also see Section 5.4 for on overview of the Error domains.

Detailed error report	Start	Identifier	Error flags (8 Digits)	St	ор
Detailed error frame	1	Е	* * * * * * * * *	CR	LF

Figure 25 WebGUI Detailed Error Report Frame Format

			Bit	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
ERR	OR_C	DETAI	LED	CRC	CRC	CRC	CRC	FLS	FLS	FLS	FLS	FFT	FFT	FFT	FFT	ADC	ADC	ADC	ADC	AMP	AMP	AMP	AMP	PLL	PLL	PLL	PLL	RFE	RFE	RFE	RFE	RFE	RFE	RFE	RFE
					CRC								FFT								AMP								RFE						
					0	no ei	rror	mm					0	no ei	ror						0	no er	ror	mm	mm				0	no ei	ror	mm	mm		
					1	vese	Ned /						1	rese	ved						1	teser	xed//						1	nese:	wed/				
																													_						
					CRC								FFT								AMP								RFE						
					0	no ei	rror						0	no ei	ror						0	no er	ror						0	no ei	ror	mm	mm		
					1	vese)	wed/						1	xese)	ved/						1	<i>vese</i> :	veø//						1	1989)	XRd/				
					CRC								FFT																REE	h	it nu	nhor	6		
					0	no ei	rror						0	no ei	ror						0	no er	ror						0	no ei	rror	noer	0		
					1	(este	KIEK						1	1656	KKK (1	<i>Keke</i>							1	RFE	out of	spec			
	_					177770	0000							20000							_	2011110	2000												
					CRC								FFT								AMP	bi	t num	nber 1	.3				RFE	b	it nur	nber	5		
					0	no ei	rror						0	no ei	ror						0	no er	ror						0	no ei	rror				
					1	rese	rved						1	resei	ved						1	Satur	ation						1	rese	ved				
					FLS								ADC								PLL								RFE	b	it nur	nber	4		
					0	no ei	rror						0	no ei	ror						0	no er	ror						0	no ei	rror				
					1	rese	ved						1	tese)	ved						1	reser	ved//						1	BW c	verru	ın			
					FLS								ADC								PLL	bi	t num	ber 1	1				RFE	b	it nur	nber	3		
					0	no ei	rror	aaaa	unn				0	no ei	ror						0	no er	ror						0	no ei	ror				
					1	rese	ved	<u> </u>					1	rese	veø						1	Lock	loss						1	BWι	inder	run			
					51.0												_								•								_		
					FLS								ADC	bi	t nun	nber 1	.8				PLL	bi	t num	ber 1	10				RFE	b	it nur	nber	2		
					0	no ei	rror		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0	no ei	ror						0	no er	ror						0	no ei	ror				
					1	vese)	<i>://9///</i>						1	DCe	ror						1	Fmax	not f	ound					1	FDas	e nigi	1			
					FLS								ADC	þi	t nun	nber 1	.7				PLL	b	it nun	nber	9				RFF	b	it nur	nber	1		
	_				0	no ei	rror						0	no ei	ror						0	no er	ror		-				0	no ei	rror				<u> </u>
					1	(ese	Ked						1	Sam	ole ov	errun					1	Fmin	not f	ound					1	Fbas	e low				
																							Í												

Figure 26 WebGUI Detailed Error Report Bits

5.6 <u>!! Command – Answer: System Information</u>

The system info frame is used to uniquely identify SiRad Evaluation Kits and return Firmware information.

System information	on	Start	Identifier	Microcontroller UID (24 Digits)	reserved	RFE MinFreq (5 Digits)	RFE MaxFreq (5 Digits)	Sto	ф
System info frame	2	1	- I	x x x x x x x x x x x	x x	ххххх	ххххх	CR	LF
Figure 27 We	bGUI Sy	stem l	nformati	on Data Frame Format					

WebGUI System Information Data Frame Format

Table 26 WebGUI System Information Bits

Format Field	Field Size	Encoding	Example	Interpretation	Allowed Values
Microcontroller UID	24 digits	HEX string	'800F0011570A 463332322039'	-	-
RFE MinFreq	5 digits	HEX string between '00000' and 'FFFFF'	'07436	119000 MHz	0 to 524287 MHz
RFE MaxFreq	5 digits	HEX string between '00000' and 'FFFFF'	ʻ07A12	125000 MHz	0 to 524287 MHz

5.7 <u>IV Command – Answer: Version Information</u>

The version frame is used to uniquely identify the evaluation kit and returns information about the hardware and firmware.

Version information	Start	Identifier	Len	gth	UID	tag	'U' le	en L1	UID (L1)	нw	tag	'H' le	n L2	НW	(L2)	PLL	tag	'P' le	en L3	PLL	(L3)	Qtag	3	'Q' len L4	Q	(L4)
Version info frame	_ !	V	хх	хх	<u>ט'</u>	1	х	х	L1 '	* х	- 'F	Ť.	х	х	L2	* x	1	Ρ'	х	х	L3	* х	'Q'		хх	L4	• * x
			ADC	tag	'A' le	n L5	ADC	(L5)	RFE	tag	'F' le	n L6	RFE	(L6)	sw	tag	'S' le	en L7	sw	(L7)	СР	tag	'C' len	L8	CP (L8)	s	top
		$ \longrightarrow $	' <i>'</i>	۹'	x	x	L5	* x	'F	1	х	x	L6	* x	- C	5'	х	x	L7	* x	'(C'	хх		L8 * x	CR	LF

Figure 28 WebGUI Version Information Data Frame Format (WebGUI Output Format Only)

Table 27 WebGUI Version Information Bits

Format Field	Field Size	Description
Length	4 HEX digits	Length of frame excluding start marker, identifier, length field itself, stop markers
UID tag	1 digit	Indicates start of the microcontroller UID info
UID length	2 HEX digits	Length of the UID field
UID	variable	The microcontroller UID is a unique unsigned HEX number
HW tag	1 digit	Indicates start of the hardware info
HW length	2 HEX digits	Length of the HW field
HW	variable	Baseboard hardware identifier, 'EA' for SiRad Easy®
PLL tag	1 digit	Indicates start of the PLL info
PLL length	2 HEX digits	Length of the PLL field
PLL	variable	PLL chip identifier, '59' for the ADF4159
Q tag	1 digit	Indicates start of the clock info
Q length	2 HEX digits	Length of the Q field
Q	variable	CLK chip identifier
ADC tag	1 digit	Indicates start of the ADC info
ADC length	2 HEX digits	Length of the ADC field
ADC	variable	Operating mode of the ADC, 'I' for interleaved, 'N' non-interleaved
RFE tag	1 digit	Indicates start of the radar front end info
RFE length	2 HEX digits	Length of the RFE field
RFE	variable	Radar front end chip identifier of firmware
SW tag	1 digit	Indicates start of the software / firmware info
SW length	2 HEX digits	Length of the SW field
SW	variable	Firmware version in format: <check-in id="">-<date>-<major>.<minor>.<revision></revision></minor></major></date></check-in>
CP tag	1 digit	Indicates start of the communication protocol info
CP length	2 HEX digits	Length of the CP field
СР	variable	Protocol version in format: <protocol id="">-<spec date="">-<major>.<minor>.<revision></revision></minor></major></spec></protocol>

Table 28 RFE Types

RFE Field	Description
024_x6	TRX_024_046
120_01	TRX_120_001
120_02	TRA_120_002
120_45	TRA_120_045
120_67	TRX_120_067
300_42	TRA_300_042

6 TSV Output Mode

Figure 29 shows the supported TSV output frames and Figure 30 lists their purpose. The TSV protocol has a limited set of data frames. When the TSV output is activated, the data is in decimal range. Therefore, the TSV data frames can be configured to transmit the raw data of the ADC. The blue parts in Figure 30 indicate start and stop markers, frame identifiers and delimiters as well as signs, yellow indicates data parts with string numbers of variable length.

The WebGUI output frames for the version info (!V), system info (!I), and the error frames (!E), can be used together with the TSV output mode but there is no TSV representation of these frames. They will be transmitted in WebGUI format, if requested.

1 m 27482 hr 128 hr 2731 hr 2718 hr 2662 hr 2663 hr 2612 hr 2579 hr 2579 hr 2463 hr 2463 hr 2447 hr 2434 hr 2476 hr 2463 hr 2447 hr 2434 hr 233 hr 2339 hr 2337 hr 2374 hr 2339 hr 2357 hr 2493 hr 2357 hr 2493 hr 2357 hr 2493 hr 2357 hr 2493 hr 2343 hr 2339 hr 2353 hr 2349 hr 2335 hr 2357 hr 2453 hr 2345 hr 2 235 hr 2343 hr 2336 hr 233 hr 2338 hr 2338 hr 2338 hr 2338 hr 2336 hr 233 hr 236 hr 235 hr 234 hr 237 hr 235 hr 234 hr 237 hr 235 hr 236 hr 200 hr 236 hr 200 hr 236 hr 200 hr	
10m 27482br 128br 3155br 3165br 3167br 3182br 3150br 3150br 3150br 3150br 316br 3150br 316br 316br 316br 316br 316br 316br 316br 316br 3142br 3142br 3142br 3145br 3116br 316br 316br 316br 316br 316br 316br 316br 316br 316br 3143br 3142br 3145br 3145br 316br <	
US1 m 2U31 m 2U19 m 2U11 m 2U06 m 2U06 m 2U01 m 2U02 m 2U02 m 2U02 m 2U06 m 2U06 m 2U06 m 2U06 m 2003 m 2U07 m 2007 m 2007 m 2U26 m 2U25 m 2U35 m 2U	
Display Port Capture Pins Send Echo Port 12C 12C-2 12CMisc Misc Clear Freeze	?
Baud 1000000 • Port 8 • Deen Spy Change Disc Parity • Data Bits Stop Bits • Software Flow Control • Software Flow Control • RxC • None • 8 bits • 1 bit • 2 bits • Transmit Xoff Char; 17 • Control • None • 6 bits • None • RTXD • DCC • Mark • 6 bits • None • RTX/CTS • DCC • Mark • 5 bits • DTR/DSR • RS485rts • Winsock is: • DCC • Call • DTR/DSR • RS485rts • Telnet • Raw • Ring	connect) (2)) (3) ; (8)) (1) 3 (6) 3 (9) ;AK r

Figure 29 TSV Data Frame (!! and !Q Frame) in a Terminal Window

All TSV frames begin with a start marker (1 byte) and identifier (1 byte) followed by a counter (2 byte). The counter is a 16 bit number starting from 0 and increasing by 1 with each measurement cycle. The counter automatically overflows to 0 after reaching the maximum value 65535. Values are separated by a tab delimiter. Frames end with a stop marker ('CR' and 'LF').

TSV data frames																												
								E	Block,	repea	ted 'Si	ize' tir	nes	~					!	Star	t Mai	rker,	Ider	ntifie	er an	d Sto	p Ma	arker
ADC, FFT and CFAR data	Start	Identifier	Del	Cnt	Del	Size	Del	Sgn			Data			Del	St	ор			n	Strii	ng Nu	umbe	er	any	leng	th		
Magnitude/Range frame		R																										
Phase frame		Р																										
CFAR frame	1	С	/t	n	/t	n	/t	-			n			/t	CR	LF												
ADC data frame (I)		MI																										
ADC data frame (Q)		MQ																										
																Block	, repe	ated 1	6 tim	es>								
Target information	Start	Identifier	Del	Cnt	Del	For	mat	Del	Gain	Del	Tar	get#	Del	Dist	ance	Del	Sgn	Mag	Del	Sgn	Pha	ase	Del	res.	Del	St	эр	
Target list frame	1	т	/t	n	/t		n	/t	с	/t		n	/t		ı	/t	-	n	/t	-	n	ı	/t		/t	CR	LF	
Status information	Start	Identifier	Del	Cnt	Del	For	mat	Del	Gain	Del	Acci	uracy	Del	Max.	range	Del	Ram	o time	Del	Sgn	Bandy	width	Del	Time	diff.	Del	Sto	op
Status update frame	1	U	/t	n	/t		n	/t	с	/t		n	/t		ı	/t		n	/t	-	n	ı	/t		n	/t	CR	LF

Figure 30 TSV Data Frame Formats

6.1 ADC, Magnitude/Range, Phase and CFAR Output

The 'Size' field indicates the number of transmitted data points. The value range of the data differs with the content of the frame. The value range of ADC/Magnitude/Range, Phase, and CFAR data is -32768 to +32767. The value range of the raw ADC data for 1 ramp is 12 bits (0 to 4096).

The size of the ADC data is always 2 times the number of samples, when no down sampling is configured.

								Bloc	k, repeated 'Size' times	>		
ADC, FFT and CFAR data	Start	Identifier	Del	Cnt	Del	Size	Del	Sgn	Data	Del	St	ор
Magnitude/Range frame		R										
Phase frame		Р										
CFAR frame	1	С	/t	n	/t	n	/t	-	n	/t	CR	LF
ADC data frame (I)		MI	1									
ADC data frame (Q)		MQ	1									

Figure 31 TSV ADC, Magnitude, Phase and CFAR Data Frame Format

Format Field	Content	Encoding	
Del	Delimiter	\t	
Cnt	Measurement cycle counter	decimal between 0 to 65535	decimal between 0 to 65535
Size	Size of the transmitted data	decimal between 0 to 65535	
Sgn	Sign indicator		
	FFT/ Raw Data/ADC	decimal between -32768 to +32767	decimal between -32768 to +32767
Data	Magnitude/ Range/ CFAR	decimal between -32768 to +32767	-140 to 0 (dB unit)
	Phase	decimal between -32768 to +32767	100000*(-π to +π rad)

Table 29 TSV ADC, Magnitude, Phase and CFAR Data Values

6.2 Target Information

The theoretical value range of the target Magnitude is -32768 to +32767, however, the typical value range is -140 to 0 (dB).

													Block,	repe	ated 1	6 tim	es>					
Target information	Start	Identifier	Del	Cnt	Del	Format	Del	Gain	Del	Target #	Del	Distance	Del	Sgn	Mag	Del	Sgn	Phase	Del	res.	Del	Stop
Target list frame	1	т	/t	n	/t	n	/t	с	/t	n	/t	n	/t	-	n	/t	1	n	/t	/ <u>k</u> //	/t	CR LF

Figure 32 TSV Target List Data Frame Format

Table 30 TSV Target List Data Values

Format Field	Content	Encoding
Del	Delimiter	\t
Cnt	Measurement cycle counter	decimal between 0 to 65535
Format	Indicates the distance unit	decimal between 0-1
Gain	Indicates the current gain level	decimal dB values, see Table 1
Target #	Indicates the target number	decimal between 0-15
Distance	Target distance	decimal between 0 to 65535
Sgn	Sign indicator	
Magnitude	Magnitude of the target	decimal between -32768 to +32767
Phase	Phase value of the target	decimal between -32768 to +32767

Table 31 TSV Target List Data and Status Update Data - Format Field

Format (HEX)	Description
0	distance in mm
1	distance in cm

6.3 Status Update

In the TSV status update frame, the unit for the ramp time is us and for the bandwidth MHz. To convert the accuracy into mm, the data should be divided by 10. If the accuracy field says 271, the system accuracy is 27.1 mm. The time difference field indicates the time since the last measurement. The time difference data is interpreted as values between 0 and 65535, which translates to 0 to 0.65535 seconds in 10 ms steps. For example, 'Time diff.' = 0200 is interpreted as 0x0200, which is 512 in decimal range. The time difference counter runs at 100 kHz and is configured as an overflowing 16-bit counter. Each tick lasts 10 ms and the counter overflows at 0.65535 seconds. Therefore, the minimum unambiguous measurement frequency is 1.5 Hz.

Status information	Start	Identifier	Del	Cnt	Del	Format	Del	Gain	Del	Accuracy	Del	Max. range	Del	Ramp time	Del	Sgn	Bandwidth	Del	Time diff.	Del	Ste	р
Status update frame	1	U	/t	n	/t	n	/t	с	/t	n	/t	n	/t	n	/t	4	n	/t	n	/t	CR	LF
				-																		

Figure 33 TSV Status Update Data Frame Format

Format Field	Content	Encoding
Del	Delimiter	\t
Cnt	Measurement cycle counter	decimal between 0 to 65535
Format	Indicates the distance unit	decimal between 0-1
Gain	Indicates the current gain level	decimal dB values, see Table 1
Accuracy	Device accuracy	decimal between 0 to 65535
Max. range	Maximum range of device	decimal between 0 to 65535
Ramp time	Length of the ramp in us	decimal between 0 to 65535
Bandwidth	Bandwidth in MHz	decimal between-32768 to +32767, Interpretation = -65536 to 65534 in MHz (2 MHz steps)
Time difference	Indictor for update rate	decimal between 0 to 65535

Table 32 TSV Status Update Data Values

7 Binary Output Mode

The Binary Mode has been changed from firmware 1.2 to 1.3, please see Section 4 for Input protocol of Binary Mode.

The binary frames start with a header and a counter (2 byte), followed by a frame identifier (1 byte). The frame counter is a counter that increases with each transmitted frame. The frame length is the total length of data frame. It is followed by Tx and Rx ID, data source and gain. The measurement counter is a 16 bit number starting from 0 and increasing by 1 with each measurement cycle. Both counters automatically overflow to 0 after reaching the maximum value 65535. Sensor data is transmitted as data payload. The type of data and size of data payload are given in data type and No. elements. The frames end with CRC-32 checksum and a stop marker ('CR' and 'LF'). The data order for binary mode is little endian.

Figure 34 Binary Data in a Terminal Window

DATA FRAN	Е															
Header		Fram	e cnt	Id	Frame	Length	Tx ID	Rx ID	Data S.	Gain	Mea	s. cnt	Stim	e cnt	Updat	e Rate
AA/AA/BB/C	С	uint	:16	D	uin	t16	uint8	uint8	uint8	uint8	uin	t16	uin	t16	uin	t16
				Data	Туре	Variab	le type	No. ele	ements	Data	payload	l (No. ele	ements	digit)	CRC-32	Stop
				uiı	nt8	uir	nt8	uin	t16	x	x	x	x	x	uint32	CRLF

Figure 35 Data Frame

Table 33Binary Frame Data Values

Format Field	Field Size	Content	Encoding	Allowed Values
Header	4 bytes	Start of frame	Fixed	AAAABBCC
Frame Counter	2 bytes	Frame counter	Unsigned Integer	0 to 65535
Frame Identifier	1 byte	Frame identifier	Fixed	See Table 35
Frame Length	2 bytes	Total length of 'data type', 'variable type', 'no. samples' and 'data payload' fields	Unsigned Integer	0 to 65535
TxID	1 byte	Transmit channel ID	Unsigned Integer	1
RxID	1 byte	Receive channel ID	Unsigned Integer	1
Data Source	1 byte	Data Source	Unsigned Integer	See Table 34
Gain	1 byte	System Gain in dB	Unsigned Integer	0 to 256
Measurement Cnt	2 bytes	Measurement cycle counter	Unsigned Integer	0 to 65535
Slowtime Cnt	2 bytes	Slowtime counter	0	0
Update Rate	2 bytes	Update rate	Unsigned Integer	0 to 65535
Data Type	1 byte	Form of data in payload	Unsigned Integer	0 to 65535
Variable Type	1 byte	Format of sample points in data payload	Unsigned Integer	0 to 65535
No. Elements	2 bytes	Number of sample points in data payload in bytes	Unsigned Integer	0 to 65535
Data Payload	N bytes	Sensor Data	Variable Type	
CRC-32	4 bytes	Checksum of Data Frame	Unsigned Integer	0 to 4294967295
Stop Mark	2 bytes	Stop mark of Data Frame	Unsigned Integer	\r\n

Table 34 Data Source

Data Source	Value
I Channel	1
Q Channel	2
Interleaved Channel	3
Summed Channel	4

Table 35 Binary Frame Identifier Overview

Frame Identifier	Tag	Content
Data Frame	D	Contains radar signal related data
Error Frame	E	Contains basic error information
Info Frame	1	Contains hardware and firmware information
Parameter Frame	Р	Contains radar parameters and their values

7.1 Data Frame; ADC Raw Data (I/Q), Magnitude, Phase and CFAR Output

Table 36 Binary ADC, FFT, Magnitude, Phase and CFAR Data Values

Format Field	Field Size	Content	Encoding	Allowed Values
	No. Samples	Magnitude/Range/ CFAR	Signed Integer	-140 to 0 (dB unit)
Data Payload	No. Samples	Phase	Signed Integer	10000*(-π to +π rad)
	No. Samples	ADC/FFT	Unsigned/Signed Integer	decimal between -32768 to +32767

7.2 Data Frame; Target Information

Target no.	Distance	Magnitude	Phase	Velocity	Azimuth	Elevation	SNR	Target Age			
uint8	uint16	int16	int16	int16	int16	int16	uint16	uint16			
	No. of detected target / Data Payload										

Figure 36 Target information – payload in Data Frame

The theoretical value range of the target Magnitude is -32768 to +32767, however, the typical value range is -140 to 0 (dB).

Format Field	Field Size	Content	Encoding	Allowed Values
Target no.	1 byte	Indicates the target number	Unsigned Integer	0 to 15
Distance	2 bytes	Target distance	Unsigned Integer	0 to 65535
Magnitude	2 bytes	Magnitude of the target	Signed Integer	-32768 to +32767
Phase	2 bytes	Phase value of the target	Signed Integer	-32768 to +32767
Velocity	2 bytes	Velocity of the target	Signed Integer	-32768 to +32767
Azimuth Angle	2 bytes	Azimuth angle of the target	Signed Integer	0
Elevation Angle	2 bytes	Elevation angle of the target	Signed Integer	0
SNR	2 bytes	Signal to noise ratio	Unsigned Integer	0 to 65535
Target Age	2 bytes	Target age	Unsigned Integer	0 to 65535

Table 37Binary Target List Data Values

7.3 Parameters Frame

PARAMETER FRAME												
Header	Frame cnt	Id	Length	Tag	Data Length	Data	Tag	Data Length	Data	CRC-32	St	ор
AA/AA/BB/CC	uint16	Ρ	uint16	uint32	uint16	х	uint32	uint16	x	uint32	CR	LF
							repeated	no of parame	eter times			

Figure 37 Parameter Frame

Parameters Frame contains all the parameters that can be set on the kit, see Table 21. Tag represents the parameter name, data is the values of the parameter.

In the binary parameters frame, the unit for the ramp time us and for the bandwidth MHz. To convert the accuracy into mm, the data should be divided by 10. If the accuracy field says 271, the system accuracy is 27.1 mm. The time difference field indicates the time since the last measurement. The time difference data is interpreted as values between 0 and 65535, which translates to 0 to 0.65535 seconds in 10 ms steps. For example, 'Time diff.' = 0200 is interpreted as 0x0200, which is 512 in decimal range. The time difference counter runs at 100 kHz and is configured as an overflowing 16-bit counter. Each tick lasts 10 ms and the counter overflows at 0.65535 seconds. Therefore, the minimum unambiguous measurement frequency is 1.5 Hz.

Table 38	Binary	Parameters	Data	Values
	,			

Format Field	Field Size	Description	Encoding	Allowed Values
Header	4 bytes	Start of frame	Fixed	AAAABBCC
Frame Counter	2 bytes	Frame counter	Unsigned Integer	0 to 65535
Frame Identifier	1 byte	Frame identifier	Fixed	Table 35
Data Length	2 bytes	Length of frame excluding start marker, identifier, length field itself, CRC checksum, stop markers	Unsigned Integer	0 to 65535

7.4 Info Frame

INFO FRAME												
Header	Frame cnt	Id	Length	Tag	Data Length	Data	Tag	Data Length	Data	CRC-32	St	ор
AA/AA/BB/CC	uint16	Т	uint16	х	uint16	х	x	uint16	х	uint32	CR	LF
							repeated i	no of system p	parameter			

Figure 38 Info Frame

ies
l

Format Field	Field Size	Description	Encoding	Allowed Values
Header	2 bytes	Start of frame	Fixed	AAAABBCC
Frame Counter	2 bytes	Measurement cycle counter	Unsigned Integer	0 to 65535
Frame Identifier	1 byte	Frame identifier	Fixed	Fixed

Table 40 Info Tags

Format Field	Field Size	Description
Data Length	2 bytes	Length of frame excluding start marker, identifier, length field itself, CRC checksum, stop markers
UID	3 bytes	Indicates start of the microcontroller UID info
UID length	2 bytes	Length of the UID field in bytes
Data	UID length	The microcontroller UID is a unique unsigned HEX number
HW	2 bytes	Indicates start of the hardware info
HW length	2 bytes	Length of the HW field in bytes
Data	HW length	Baseboard hardware identifier
RFE	3 bytes	Indicates start of the radar front end info
RFE length	2 bytes	Length of the RFE field in bytes
Data	RFE length	Radar front end chip identifier of firmware
FW	2 bytes	Indicates start of the software / firmware info
FW length	2 bytes	Length of the FW field in bytes
Data	FW length	Firmware version in format: <check-in id="">-<date>-<major>.<minor>.<revision></revision></minor></major></date></check-in>
СР	2 bytes	Indicates start of the communication protocol info
CP length	2 bytes	Length of the CP field in bytes
Data	CP length	Protocol version in format: <protocol id="">-<spec date="">-<major>.<revision></revision></major></spec></protocol>

7.5 Error Frame

ERROR FRAME												
Header	Frame cnt	Id	Length	Tag	Data Length	Data	Тад	Data Length	Data	CRC-32	St	ор
AA/AA/BB/CC	uint16	E	uint16	8 bytes	uint16	uint32	8 bytes	uint16	uint32	uint32	CR	LF
repeated no of error												

Figure 39 Error Frame

The error frame contains error bits that may be raised temporarily during the signal processing of the radar data and may be removed when changing the settings. This frame contains specific error information grouped under 4 different fields. If an error is present, first the group name tag and then the error tag comes. Please see Figure 34 for display of Error Frame in a terminal window. When there is no error, the error data blocks (light blue) will not be present in the Error frame.

In Table 42, colored rows represent each error blocks, the bold words in the Format Field sections are error group names and the below tags under the same color are error tags.

Multiple errors that belong to one error group can be raised at the same time, in that case the error tags are separated with '|'. The main errors are separated with comma','.

An example of error data blocks (light blue) in the error frame is given below; COMMNCTN | CRCE, TRANSCVR | BWUR | FBSH

Table 41Binary Error Data Values

Format Field	Field Size	Description	Encoding	Allowed Values
Header	2 bytes	Start of frame	Fixed	AAAABBCC
Frame Counter	2 bytes	Measurement cycle counter	Unsigned Integer	0 to 65535
Frame Identifier	1 byte	Frame identifier	Fixed	E

Table 42 Error Tags

Format Field	Field Size	Description
Data Length	2 bytes	Length of frame excluding header, identifier, length field itself, stop markers
COMMNCTN	8 bytes	Indicates the communication errors start point. Communication errors between kit and PC
CRCE	4 bytes	CRC/Protocol error
COMP	4 bytes	Com Port error
TRANSCVR	8 bytes	Indicates the transceiver errors start point. Errors are related to RFE and PLL.
RFEO	4 bytes	RFE out of spec
BWOR	4 bytes	BW Overrun
BWUR	4 bytes	BW Underrun
FBSH	4 bytes	Base Frequency too high
FBSL	4 bytes	Base Frequency too low
LCKL	4 bytes	Lock Loss
BIST	4 bytes	BIST Error
FMAX	4 bytes	Maximum Frequency not found
FMIN	4 bytes	Minimum Frequency not found
ISME	4 bytes	ISM error
PROCSSNG	8 bytes	Indicates the processing errors start point. Processing errors.
FFTP	4 bytes	FFT Points
FFTO	4 bytes	FFT Overrun - If no of samples > FFT Size
GAIN (level)	4 bytes	Saturation (Software)
SYSTMCON	8 bytes	Indicates the system errors start point. General system related errors.
FSAMP	4 bytes	Sampling frequency error
STAT	4 bytes	State Machine error
FLSH	4 bytes	Flashing error
STRN	4 bytes	Saturation (Hardware)
SMPO	4 bytes	Sample Overrun – ADC faster than processing

Disclaimer

Silicon Radar GmbH 2021. The information contained herein is subject to change at any time without notice.

Silicon Radar GmbH assumes no responsibility or liability for any loss, damage or defect of a product which is caused in whole or in part by

- (i) use of any circuitry other than circuitry embodied in a Silicon Radar GmbH product,
- (ii) misuse or abuse including static discharge, neglect, or accident,
- (iii) unauthorized modifications or repairs which have been soldered or altered during assembly and are not capable of being tested by Silicon Radar GmbH under its normal test conditions, or
- (iv) improper installation, storage, handling, warehousing, or transportation, or
- (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: Silicon Radar GmbH makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any Silicon Radar product and any product documentation. Products sold by Silicon Radar are not suitable or intended to be used in a life support applications or components, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY: BUYER AGREES NOT TO USE SILICON RADAR GMBH'S PRODUCTS FOR ANY APPLICATIONS OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

Silicon Radar GmbH owns all rights, titles and interests to the intellectual property related to Silicon Radar GmbH's products, including any software, firmware, copyright, patent, or trademark. The sale of Silicon Radar GmbH's products does not convey or imply any license under patent or other rights. Silicon Radar GmbH retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by Silicon Radar GmbH. Unless otherwise agreed to in writing by Silicon Radar GmbH, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.